The most frequent metabolic failures in childhood

Agnieszka Wegner MD, PhD Department of Pediatric Neurology Medical University of Warsaw

Inborn error of metabolism (IEM)

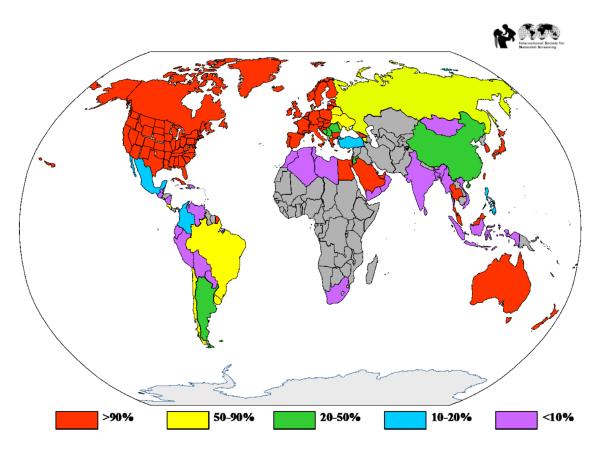
- 1. Inborn errors of metabolism (IEM) are disorders in which there is a block at some point in the normal metabolic pathway
- 2. IEMs occur due to mutations in DNA
- 3. While the diseases individually are rare, they collectively account for a significant proportion of neonatal and childhood morbidity and mortality
- 4. IEMs incidence 1 in 2000 infants
- 5. Diagnosis is important not only for treatment but also for genetic counselling and antenatal diagnosis in subsequent pregnancies
- 6. An inborn error of metabolism may be suspected before birth from a positive family history or previous unexplained deaths in the family

Diagnosis

After birth, inborn errors of metabolism usually, but not invariably, present in one of five ways:

- **1**. As a result of **newborn screening**, e.g. phenylketonuria (PKU)
- 2. After a short period of apparent normality, with symptoms as: **poor feeding**, **vomiting**, **encephalopathy**, **acidosis**, **coma and death**, e.g. organic acid or urea cycle disorders
- 3. As an infant or older child with symptoms similar to that described above but with **hypoglycaemia** as a prominent feature or as an ALTE (acute lifethreatening episode), e.g. a fat oxidation defect such as medium-chain acyl-CoA dehydrogenase deficiency (MCADD)
- 4. In a subacute way, after a period of normal development, with **regression**, **organomegaly and coarse facies**, e.g. mucopolysaccharide disease or other lysosomal storage disorder or with **hepatosplenomegaly**/ **splenomegaly**, with or without accompanying biochemical upset such as hypoglycaemia, e.g. glycogen storage disease
- 5. As a **dysmorphic syndrome**

Newborn screening


All babies born in Poland have a screening test to detect:

- 1. Hypothyroidism
- 2. Phenylketonuria (PKU)
- 3. Cystic fibrosis (CF)
- 20 other metabolic disorders such as organic acidemias, a fat oxidation defect defects, aminoacidopathies - MSUD, homocystinuria, citrulinemia, tyrosinemia – by tandem mass spectrometry (from 2013)

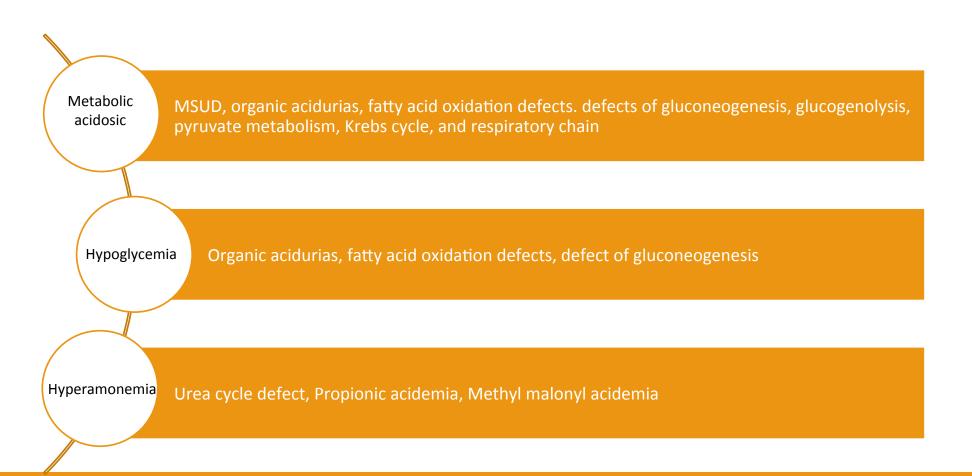
The tests are done on a spot of blood from a heel-prick collected onto a filter paper.

Number of children included into screening test

Clinical pointers of IEM

- 1. Symptoms appear when the child diet is changed (e.g. galactosemia, fructosemia)
- 2. Deterioration after a period without alarming symptoms
- 3. Parental consanguinity
- 4. Family history of neonatal deaths
- 5. Rapidly progressive encephalopathy and seizures of unexplained cause
- 6. Recurrent vomiting
- 7. Unusual odour of urine

Symptoms of IEM


IEM must be also considered in the differential diagnosis of

>Critically ill newborns

- Neurodegeneration, mental retardation
- Coarse facies, dysmorphic features
- Acute liver disease
- Cardiomyopathy
- ➢Organomegaly
- >Corneal opacity, cataract or dislocation of lens
- >Hyperammonemia, unexplained acidosis, hypoglycemia

Clinical finding	Disorder
Coarse facies	Lysosomal disordes
Cataract	Galactosemia
Cherry red spot	Lipidosis
Hepatosplenomegaly	Urea cycle defects
Abnormal kinky hair	Menkes disease
Decreased pigmantation	Phenyloketonuria
Urine odour	Disorder
Maple syrop	Maple syrop urine disease
Boiled cabbage	Hypermethioninemia
Mousey, musty	Phenyloketonurmia
Boiled cabbage, rancid butter	Tyrosinemia
• .	Tyrosinemia Trimethylaminuria

Neurological detoriation with...

Hypotonia

Mitochondrial respiratory chain defects

Peroxisomal disorders

Non-ketotic hyperglycinemia

Sulfite oxidase/molybdenum co-factor defect

Seizures

Pyridoxine – responsive seizures, 1st day Pyridoxal phosphate responsive seizures 1t day Folinic-acid responsive seizures 1st day Sulfite oxidase/molybdenum co-factor defect Peroxisomal disorders Disorders of creatine biosynthesis & transport

Liver dysfunction

Liver failure Galactosemia Hereditary fructose intolerance Tyrosinemia type I Fatty acid oxydation defects Mitochondrial respiratory chain defects

Cholestatic jaundice with failure to thrive: Alpha-1-antitrypsin deficiency Niemann-Pick disease type C Peroxisomal disorders

Phenylketonuria

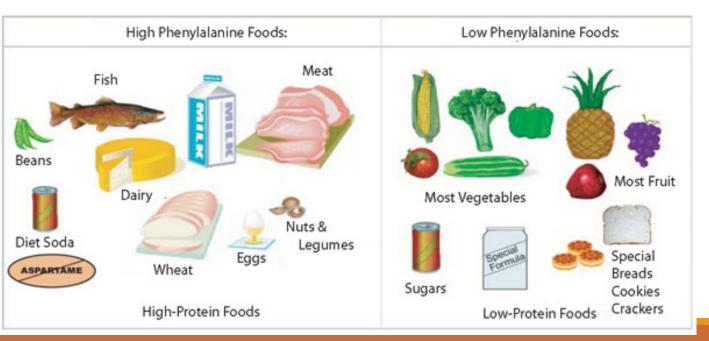
≻It occurs in 1 in 15 000 live births

Caused - deficiency of the enzyme phenylalanine hydroxylase (classical PKU) or in the synthesis or recycling of the biopterin cofactor for this enzyme.

>Untreated, it usually presents with developmental delay at 6–12 months of age.

>Many affected children are fair-haired and blue-eyed, some develop eczema and seizures.

Treatment restriction of dietary phenylalanine


> The blood plasma phenylalanine should be monitored regularly.

>The current recommendation is to maintain the diet throughout life. This is particularly important during pregnancy, when high maternal phenylalanine levels may damage the fetus.

Cofactor defects, which have a much poorer prognosis than classical PKU, are treated with a diet low in phenylalanine and neurotransmitter precursors.

Phenyloketonuria

Tyrosinemia

Tyrosinemia (type 1) is a rare autosomal recessive disorder caused by a deficiency of fumarylacetoacetase

>Accumulation of toxic metabolites results in damage to the liver (leading to liver failure) and renal tubules (resulting in Fanconi syndrome)

>Untreated is fatal

Treatment – drug Nitisinone (NTBC), which inhibits an enzyme required in the catabolism of tyrosine, with a diet low in tyrosine and phenylalanine.

Galactosemia

This rare, recessively inherited disorder results from deficiency of the enzyme galactose-1-phosphate uridyltransferase, which is essential for galactose metabolism.

When lactose – disaccharide build from glucose and glucose, found in milk are introduced, caused :

➢ problem with feeding

➢vomits

jaundice

hepatomegaly and hepatic failure

Untreated galactosemia lead to: chronic liver disease, cataracts and developmental delay.

Management is with a lactose and galactose - free diet for life. Even if treated early, there are usually moderate learning difficulties (adult IQ 60–80).

Basic laboratory tests

- Complete blood count
- >Arterial blood gases and electrolytes- acidosis/ alkalosis
- ➢Blood glucose
- ➢Plasma ammonia
- Arterial blood lactate
- Liver function tests
- Urine ketones if acidosis or hypoglycemia present
- Urine reducing substances
- >Serum uric acid (low in molybdenum cofactor deficiency).
- ➢Plasma amino acids

Collecting samples

Should be collected before specific treatment is started or feeds are stopped

Samples for blood ammonia and lactate should be transported in ice and immediately tested.

Lactate sample should be arterial or central line and should be collected after 2 hours fasting in a preheparinized syringe.

Collecting samples

Samples have to be obtained infant with suspected IEM especially when diagnosis is uncertain and death seems inevitable

Blood: 5-10 ml; frozen at -200C; both heparinized (for chromosomal studies) and EDTA (for DNA studies)

Urine: frozen at –20oC

CSF: store at -20oC

Skin biopsy: including dermis in culture medium or saline with glucose. Store at 4-80C. Do not freeze.

Liver, muscle, kidney and heart biopsy: as indicated.

Clinical photograph (in cases with dysmorphism)

Infantogram (in cases with skeletal abnormalities)

Treatment

Aims of treatment

- 1. Decreasing substrate availability (by stopping feeds and preventing endogenous catabolism)
- 2. To provide adequate calories
- 3. To enhance the excretion of toxic metabolites
- 4. To institute co-factor therapy for specific disease and also empirically if diagnosis not established
- 5. Supportive care- treatment of seizures (avoid sodium valproate may increase ammonia levels), maintain euglycemia and normothermia, fluid, electrolyte & acid-base balance, treatment of infection, mechanical ventilation if required

In most cases, treatment needs to be instituted empirically without a specific diagnosis.

Long term therapy

Dietary treatment: this is the mainstay of treatment in phenylketonuria, maple syrup urine disease, homocystinuria, galactosemia, and glycogen storage disease type I & III.

Some disorders like urea cycle disorders and organic acidurias require dietary modification (protein restriction) in addition to other modalities.

Enzyme replacement therapy (ERT): ERT is now commercially available for some lysosomal storage disorders.

However, these disorders do not manifest in the newborn period, except Pompe's disease (Glycogen storage disorder Type II) which may present in the newborn period and for which ERT is now available.

Cofactor replacement therapy

The catalytic properties of many enzymes depend on the participation of non protein prosthetic groups, such as vitamins, as obligatory cofactors.

Disorder	Cofactor
Maple syrup urine disease	Thiamine
Homocystinuria	Pyridoxine, folic acid, vitamin B12
Biotinidase deficiency	Biotin
Hartnup disease	Nicotinic acid
Propionic acidemia	Biotin
Methylmalonic acidemia	Hydroxycobalamin
Respiratory chain disorders	Riboflavin
Glutaric acidemia	Riboflavin

Prevention

>Most of the IEM are single gene defects, inherited in an autosomal recessive manner, with a 25% recurrence risk.

>When the diagnosis is known and confirmed in the index case, prenatal diagnosis can be offered wherever available for the subsequent pregnancies.

> The samples required are Chorionic Villous tissue or Amniotic fluid

Substrate or metabolite detection: Phenylketonuria, Peroxisomal defects

> Enzyme assay: lysosomal storage disorders like Niemann-Pick disease, Gaucher disease

>DNA based (molecular) diagnosis: Detection of mutation in proband/carrier parents

Refferences and sources

Nelson textbook of Pediatrics, 19th Edition Illutrated textbook of Pediatrics, 4th Edition

Nelson textbook of Pediatrics, 19th Edition, Kliegman, Behrman, Schor, Stanton, St. Geme

www.mz.gov.pl/__data/assets/pdf_file/0004/27733/aktualny-projekt-programu-przesiew-w-PDF-na-strone.pdf

Google.com

Slideshare.net